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Abstract: In the Amazon and Orinoco basins, mercury has been released from artisanal and industrial gold

mining since the Colonial time, as well as a result of deforestation and burning of primary forest, that release

natural deposits of methyl mercury, affecting the local aquatic vertebrate fauna. This study reports the presence

of mercury in river dolphins’ genera Inia and Sotalia. Mercury concentrations were analysed in muscle tissue

samples collected from 46 individuals at the Arauca and Orinoco Rivers (Colombia), the Amazon River

(Colombia), a tributary of the Itenez River (Bolivia) and from the Tapajos River (Brazil). Ranges of total

mercury (Hg) concentration in muscle tissue of the four different taxa sampled were: I. geoffrensis humbold-

tiana 0.003–3.99 mg kg-1 ww (n = 21, Me = 0.4), I. g. geoffrensis 0.1–2.6 mg kg-1 ww (n = 15, Me = 0.55), I.

boliviensis 0.03–0.4 mg kg-1 ww (n = 8, Me = 0.1) and S. fluviatilis 0.1–0.87 mg kg-1 ww (n = 2, Me = 0.5).

The highest Hg concentration in our study was obtained at the Orinoco basin, recorded from a juvenile male of

I. g. humboldtiana (3.99 mg kg-1 ww). At the Amazon basin, higher concentrations of mercury were recorded

in the Tapajos River (Brazil) from an adult male of I. g. geoffrensis (2.6 mg kg-1 ww) and the Amazon River

from an adult female of S. fluviatilis (0.87 mg kg-1 ww). Our data support the presence of total Hg in river

dolphins distributed across the evaluated basins, evidencing the role of these cetaceans as sentinel species and

bioindicators of the presence of this heavy metal in natural aquatic environments.
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INTRODUCTION

The Amazon and Orinoco basins are home to the highest

diversity of river dolphins on the planet (Mosquera-Guerra
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et al. 2018a, b, c), represented by the genera Inia (I. geof-

frensis: I. g. geoffrensis, Amazon basin; I. g. humboldtiana,

Orinoco basin; Inia boliviensis Mamore, Itenez, Grande and

the upstream of the Madeira River, in Bolivia and Brazil;

and Inia araguaiaensis, Tocantins and Araguaia basins) and

Sotalia (S. fluviatilis, Amazon) (Caballero et al. 2007;

Shostell and Ruiz-Garcı́a 2010; Hrbek et al. 2014; Gravena

et al. 2015; Mosquera-Guerra et al. 2018a). Species within

the genus Inia are the largest river dolphins known, with

more than 2 m (150–207 kg) of body size, and showing

sexual dimorphism (da Silva 1994, 2009), while S. fluviatilis

is the smallest species in the family Delphinidae, with an

average body size of 1.5 m (35–55 kg) and no sexual

dimorphism (da Silva 1994; Da Silva and Best 1994; Ca-

ballero et al. 2007).

Amazon River dolphins are considered top predators

in freshwater ecosystems with a wide trophic spectrum (at

least 43 species in 30 fish families); in average, adult river

dolphins in the genus Inia consume 2.5–3.0 kg day-1 (Best

and da Silva 1989). These predators are intrinsically

dependent on the flood pulse dynamics of the basin and its

effect on the temporal and spatial distribution of their prey

(Mosquera-Guerra et al. 2018b). Species in these two

genera perform longitudinal migrations, with differential

spatial ecology between males and females. Males can have

displacements of more than 400 km (Mosquera-Guerra

et al. 2018b), whereas females are philopatric, remaining in

wetlands where they reproduce and take care of their off-

spring (Trujillo 2000; Mosquera-Guerra et al. 2018b). River

dolphin pregnancy lasts between 12.3 and 13 months, with

3.62 and 4.56 years between births. They have only one

offspring that reaches its maturity between 8 and 10 years,

and with an average life span of 40 years (Martin and da

Silva 2018).

As active top predators characterized by: (1) high

feeding requirements; (2) a wide trophic spectrum of prey;

(3) active behaviour; (4) extensive migrations; (5) high

biomass; and (6) extended longevity, South American river

dolphins are susceptible to exposure and ultimately accu-

mulation of contaminants such as mercury. River dolphins

are among the most threatened cetaceans on the planet

(Reeves et al. 2003), and their natural habitats have been

intensively affected by anthropogenic activities, such as

gold mining, timber deforestation, agricultural expansion

and, more recently (2000’s), the construction of hydro-

power dams, primarily in Bolivia, Brazil and Peru (An-

derson et al. 2018). To date, there are 140 dams operating

or under construction, as well as at least 428 planned dams

only for the Amazon basin (Forsberg et al. 2017; Latrubesse

et al. 2017; Anderson et al. 2018; Mosquera-Guerra et al.

2018a). This has resulted in the presence of large amounts

of chemical contaminants, including organochlorines and

mercury (Barbosa et al. 1997; Boas-Villas 1997; Amorim

et al. 2000; Bahı́a-Oliveira et al. 2004; Passos and Mergler

2008; Hacon et al. 2009). Changes in the biogeochemical

cycles, associated with the transformation of these envi-

ronments, have resulted in changes in the processes of

bioaccumulation, biotransference and biomagnification of

mercury in the food web of aquatic ecosystems (Porcella

1994; Morel et al. 1998; Ullrich et al. 2001; Sarica et al.

2005).

In this study, we document the presence of total Hg in

wild populations of river dolphins through the analysis of

this pollutant in muscle tissue samples of 46 individuals,

including dead, stranded and captured and released ani-

mals. Samples were obtained as part of a remote-moni-

toring study at the Orinoco River (border between

Colombia and Venezuela), the Amazon River in Colombia

and Peru, the Itenez River in Bolivia and Tapajos River in

Brazil. Samples from the Arauca River, in Colombia, were

obtained from stranded individuals.

MATERIALS AND METHODS

Individuals, Collecting Localities and Tissues Col-

lection

A total of 46 individuals were analysed, including: stranded

and released individuals (n = 8, 17.39%); and captured and

released animals (n = 33, 71.74%); as well as carcasses

(dead individuals) found floating in the river (n = 5,

10.87%). Captures were associated with the deployment of

transmitters as part of the Program of Satellite Monitoring

of River Dolphins (Annex I); fieldwork spanned between

2015 and 2018. Sampling localities included the following

sub-basins of the Amazon: Amazon River (Colombia,

n = 7), Caballococha Lake (Peru, n = 2), San Martin River

(Bolivia, n = 8) and Tapajos River (Brazil, n = 8); as well as

at the Orinoco basin, in the Arauca River (Colombia,

n = 8) and the Orinoco River (Colombia, n = 13) (Fig. 1).

Each individual was measured, its weight was recorded,

and its stage of age was estimated based on body length

following: Martin and da Silva (2018), da Silva (2009) and

Da Silva and Best (1994) (‘‘Appendix’’), also including

dead animals, since they were detected in general good
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conditions with a very low degree of decomposition of no

more than 24 h after death. In addition, necropsies were

performed in dead animals, according to protocols de-

scribed in Geraci and Lounsbury (2003).

For each individual, we extracted between 1 and 2 g of

muscle tissue, taken from the dorsal region under standard

conditions; samples were divided into small pieces and

stored at - 4�C in plastic containers, previously washed in

acid and taken for mercury assay, following protocols by

Kuiken and Hartmann (1993).

Mercury Analysis

Once on the laboratory, samples were acidified and stored

it in a refrigerator at approximately - 4�C to prevent

changes in volume due to evaporation (Eaton et al. 1998).

To prevent contamination, sample containers and equip-

ment were cleaned following the protocols of the Chemical

Methods Manual for Fish and Seafoods (Canadian Food

Inspection Agency. Amend 4. 1999-16.2) (Eaton et al.

1998).

Dolphin tissue samples were pre-treated, through mi-

crowave-assisted acid digestion, following the methods

proposed in the section 3030 K of the Chemical Methods

Manual for Fish and Seafoods, procedure also implemented

in Wei-Wei et al. (2006). Readings of contamination with

Hg in dolphin tissue samples were performed following the

spectrometric cold vapour atomic absorption standard

method in the Chemical Methods Manual for Fish and

Seafoods (Canadian Food Inspection Agency. Amend 4.

1999-16.2) (Eaton et al. 1998), on an iCE 3000 Series

Atomic Absorption Spectrometer—Thermo Fisher Scien-

tific. Approximately 1 g wet weight of tissue was dried in an

oven to constant weight, as suggested by Siebert et al.

(1999). The mercury detection limit was 0.003 mg kg-1,

and the mercury quantification limit was 0.1 mg kg-1 of

dolphin muscle tissue; all concentrations were reported in

grams per kilogram wet weight. The statistical analyses were

also performed with values expressed as wet weight (ww).

Figure 1. Locations where tissue samples were collected from river dolphins in the Amazon and Orinoco basins for mercury assessment.
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No appreciable Hg contamination was detected in blanks.

Tuna tissue was used as certified referenced material.

Laboratory analyses for Hg did not include replicates, since

we were only able to extract small amounts of tissue

(< 2 g) from alive individuals that constitutes 89%

(n = 41) of our samples (n = 46).

Statistical Analyses

The statistical analyses were carried out in R version 3.3 (R

Core Team 2013). A Shapiro–Wilks test was conducted to

account for data normality in data set (Hg concentration,

dolphins’ size and weight). According to this test, the Hg

data were not adjusted to a normal distribution (P value:

2.6 9 10-16). Hence, we performed a Mann–Whitney U

test for comparing Hg concentration between females and

males. Additionally, a Kruskal–Wallis test for multiple

comparisons was performed to determined Hg level dif-

ferences in dolphin tissues among basins (Amazonas, Or-

inoco and Itenez).

In order to determine the relationship between size and

weight, we performed a linear correlation between these

two variables for all analysed individuals (42 adults, two

subadults and two newborns). Afterwards, we performed a

linear correlation between: weight/length index (calculated

for all individuals) and total Hg concentration for each

taxon. Variables were log transformed before performing

the statistical analyses.

Finally, we did a box plot of the variation in total Hg

concentration by sex; and a second box plot, in order to

compare Hg concentrations for Inia and Sotalia fluviatilis

in our study and those reported for S. guianensis from the

Brazilian Atlantic coast. A significance level of alpha = 0.05

was adopted for all analyses, and the data are presented as

median (Me), maximum and minimum values.

RESULTS

We report total Hg concentration from 46 dolphin indi-

viduals, discriminated as follows: I. g. geoffrensis (n = 15; 10

Males; 5 Females) from the Amazon basin in Colombia,

Brazil and Peru; I. g. humboldtiana (n = 21; 14 Males; 7

Females), from the Orinoco basin in Colombia; I. g.

boliviensis (n = 8; 7 Males; 1 Female), from the Itenez and

San Martin Rivers in Bolivia; and S. fluviatilis (n = 2; 1

Male; 1 Female), from the Amazon River in Colombia

(Table 1; ‘‘Appendix’’).

We also documented a high variability in total Hg

concentration values among analysed samples (taxonomic

and geographic: basin and sub-basin). Mercury was de-

tected in 100% of the analysed dolphins, with maximum

values recorded for the genus Inia. Inia. g. humboldtiana

was the subspecies with the highest individual total Hg

concentration values documented in this study, recovered

from a juvenile male (3.99 mg kg-1 ww) and an adult fe-

male (3.50 mg kg-1 ww), both from the Arauca River in

the Colombian Orinoco. Inia g. geoffrensis had a maximum

total Hg concentration value of 2.60 mg kg-1 ww, in an

adult male from the Tapajos River, Brazil. Interestingly,

concentration values for I. g. geoffrensis from the Amazon

basin in Colombia, and I. boliviensis from the San Martin

River in the Bolivian Amazon, reported the lowest total Hg

concentrations with values under 0.5 mg kg-1 ww. Finally,

S. fluviatilis presented a maximum total Hg concentration

value of 0.87 mg kg-1 ww, in a female from the Amacay-

acu River, in the Colombian Amazon (Table 1).

We report a weak linear correlation (R2 = 0.21; P va-

lue = 0.00135), between size and weight among analysed

individuals (42 adults, 91.30%, two subadults, 4.34%; and

two newborns, 4.34%) (Fig. 2); as well as weak statistical

support for a series of linear correlations between the

weight/length index and total Hg concentration (F-statistic:

1.134; P value = 0.2927), for: (1) all the analysed taxa; (2) I.

g. geoffrensis; (3) I. g. humboldtiana; and (4) I. boliviensis;

(Fig. 3a–d, respectively). Since S. fluviatilis was represented

by two individuals, we only report their position on the

Cartesian plane (Fig. 3e).

The data for body size and weight were not normally

distributed. We did not find statistically significant differ-

ences in body size and weight between males and females

(Kruskal–Wallis Chi-squared = 0.18473, df = 1, P value =

0.6673; ANOVA: F value: 0.0103; P value = 0.749)

(Fig. 4). Finally, we found no significant differences in total

Hg levels among basins (Amazon, Orinoco and Itenez)

(Kruskal–Wallis Chi-squared = 5.366, df = 2, P value =

0.06836; ANOVA P value = 0.749, respectively).

Although our results showed no relationship between

total Hg concentration and body size (F-statistics = 2.122;

P value = 0.1523), we found a significant (F-statistics

4.194; P value = 0.04656), but weak correlation

(R2 = 0.087) between Hg concentration and weight.
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DISCUSSION

Evidence of mercury in the aquatic ecosystem in the

Amazon and Orinoco basins has been well documented

since the 1980s (Martinelli et al. 1988; Lacerda 1997; Lac-

erda and Salomens 1998). The main source of this pollutant

is gold extraction, mechanized, artisanal and industrial,

with an estimate of more than 200,000 tn deposited into

aquatic ecosystems since Colonial time (Pfeiffer et al. 1989;

Villas Bôas 1997; Bahı́a-Oliveira et al. 2004). Currently, the

artisanal small-scale gold mining sector is considered the

major consumer of Hg and also the main source of mer-

cury emissions in Latin America and the Caribbean

(UNEP/ROLAC 2014). Estimates for 2010 show that mer-

cury released into the atmosphere worldwide by this sector

accounted for 71% of the overall emissions, reaching 77%

in South America (UNEP/ROLAC 2014). In the Amazon,

63% of the mercury was found to be released by activities

related to gold mining (Roulet et al. 1998a, b, 2000; Artaxo

et al. 2000; Guimaraes et al. 2000). For the Amazon, the

amount of Hg released to the ecosystem by the gold mining

sector was estimated at 3000 tn between 1987 and 1994,

with an approximate average range between 100 and

200 tn year-1 (Cid de Souza and Bidone 1994; Aula et al.

1994; Guimaraes et al. 1995; Palheta and Andrew 1995;

Villas Bôas 1997; Kehrig et al. 1997; Lacerda 1997;

Barbosa and Dorea 1998; Veiga et al. 1994, 1999; Veiga

1997).

Illegal gold mining is widespread in South America,

and it is present in Brazil, in the: Tapajos (Roulet et al.

1998a, b; Dos Santos et al. 2000), Paraiba, Tocantins,

Madeira, Xingu, Negro, Amapari, Solimões and Amazon

Table 1. Concentration of Total Hg in Muscle Tissue of River Dolphins (Inia and Sotalia) in the Amazon and Orinoco River Basins.

Taxa Hg concentration (mg kg-1 wet weight) Body length (cm)

Sex Males Females All Males Females All

I. g. geoffrensis Median 0.55 0.5 0.55 179 162 178

Maximum 2.6 1.6 2.6 205 199 205

Minimum 0.1 0.1 0.1 60 120 60

No. individuals 10 5 15 10 5 15

I. g. humboldtiana Median 0.4 0.1 0.4 173.5 190 188

Maximum 3.99 3.5 3.99 227 214 227

Minimum 0.004 0.1 0.004 159 138 138

No. individuals 14 7 21 14 6 20

I. boliviensis Median 0.1 0.2 0.1 2.08 208.5

Maximum 0.4 0.2 0.4 248 226 248

Minimum 0.03 0.2 0.03 169

No. individuals 7 1 8

Sotalia fluviatilis Value 0.87 0.1 0.67 142 148 148

148

No. individuals 1 1 2 1 1 2

Figure 2. Linear correlation between size and weight among river

dolphin individuals included in our samples.
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Rivers; in Bolivia, verified at the: Madeira, Beni and Itenez

Rivers (Pouilly et al. 2013); in Colombia, at the Putumayo

and Caqueta Rivers (Nuñez-Avellaneda et al. 2014); in

Ecuador, at Nambija River; and in French Guiana, along

tributaries of the Negro River Basin (Barbosa and Dorea

1998) (Figs. 5, 6).

Figure 3. Linear correlation between weight/length index and total Hg concentration for: a all the analysed taxa; b I. g. geoffrensis; c I. g.

humboldtiana; d I. boliviensis; and e the position of the two sampled individuals of S. fluviatilis on the Cartesian plane.
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Additionally, mercury also exists in the natural soil

deposits in the Amazon Basin, and it is released into the

aquatic environment through deforestation and burning,

whereby the methylmercury bioaccumulates up the food

chain (Souza Araujo et al. 2016). As a summary, 63% of the

mercury entering the aquatic ecosystem is thought to be

related to gold mining (Roulet et al. 1998a, b, 2000; Artaxo

et al. 2000; Guimaraes et al. 2000), 31% from runoff from

deforestation and 3% from atmospheric emissions from

burning (Roulet et al. 1998a, b).

The presence of mercury in aquatic environments

constitutes one of the major problems globally, affecting

marine and continental ecosystems, such as the Amazon

and Orinoco basins, with records of this contaminant in

fish, otters and recently in river and coastal dolphins (Rosas

and Lethi 1996; Dias Fonseca et al. 2005; Siciliano et al.

2008; Panebianco et al. 2011; Salinas et al. 2013; Nuñez-

Avellaneda et al. 2014; Mosquera-Guerra et al. 2015a, b, c;

Venturieri et al. 2017). Currently, high levels of mercury

concentrations are a public health problem, with indige-

nous people and fishermen of the Tapajos and Teles Pires

Rivers in the Brazilian Amazon having high levels of this

contaminant, with values that exceeded the WHO safe limit

(0.5 mg kg-1), based on hair analyses (Dorea et al. 2005).

Wildlife is exposed primarily to methylmercury

(MeHg) through their diet, rather than to other chemical

forms of Hg, due to its persistence and high mobility within

the food web of aquatic ecosystems (Porcella 1994; Morel

et al. 1998; O’Shea 1999; Ullrich et al. 2001; Sarica et al.

2005; Moura et al. 2012), primarily in the omnivorous and

carnivorous levels, mostly affecting top predator species

(Aula et al. 1994; Malm et al. 1995, 1997; Lebel et al. 1997;

Evans et al.,1998; Basu et al. 2005; Sarica et al. 2005;

Markert 2007; Molina et al. 2010; Bossart 2011).

Despite dolphins being considered the most effective

top predators in the aquatic ecosystems of the Amazon and

Orinoco basins (Gomez-Salazar et al. 2012), a role that they

share with other mammalian species such as otters, as well

as carnivorous reptiles and fish (Trujillo 2000), we only

statistically test for biomagnification of total Hg in our data

on dolphin’s weight. We failed in finding a correlation

between total Hg concentration and body size, due to dif-

ferences in adult individual’s body size. Among river dol-

phins, differences in body size can be found at: (1) the

genus level (Inia and Sotalia); (2) among species and

subspecies of Inia (I. g. geoffrensis I. g. humboldtiana and I.

boliviensis); and even (3) at the population level, such as I.

g. geoffrensis which proved to be smaller in the Tapajos

River than in the Amazon River (da Silva 2009). However,

all the analysed individuals in this work presented high

concentrations of total Hg in their tissues, in agreement

with data reported in Rosas and Lethi (1996), who showed

evidence of the presence of this heavy metal in maternal

milk of I. g. geoffrensis from Manaus (Brazil); as well as data

in Mosquera-Guerra et al. (2015b) that confirmed the

presence of this pollutant in muscle tissues in stranded

individuals of I. g. humboldtiana (Arauca, Orinoco) and I.

g. geoffrensis (Amazon).

Sotalia guianensis distributed along the Brazilian

Atlantic coast are also affected by the presence of mercury.

High concentrations of this heavy metal have also been

evidenced in populations from Rio de Janeiro State, with

values ranging between 1.07 ± 0.35 (0.2–1.66 lg g-1 ww)

in the muscle tissue of 20 individuals (Moura et al. 2011);

Amazon coast: 0.4 ± 0.16 (0.07–0.79 lg g-1 ww, n = 27

(Moura et al. 2012); Northern Rio de Janeiro State:

0.98 lg g-1 ww, n = 21 (Kehrig et al. 2009) and 0.73

(0.34–1.42 lg g-1 ww), n = 20 (Carvalho et al. 2008);

Espirito Santo State: 1.8 ± 0.46 lg g-1 ww, n = 5 (Lopes

et al. 2008) and Guanabara Bay: 0.7 (0.2–2.5 lg g-1 ww),

n = 15 (Kehrig et al. 2004), evidencing the wide distribu-

tion of this pollutant throughout the basin and its high

mobility in the aquatic trophic networks (Sarica et al. 2005)

(Fig. 7).

Figure 4. Box plot of the variation in total Hg concentration by sex

and sampling locations.
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As mentioned, the presence of mercury is not only

restricted to dolphin populations. Data on mercury con-

centration from muscle tissue samples among other Ama-

zon aquatic vertebrates are presented in Nuñez-Avellaneda

et al. (2014), in which the presence of total mercury was

evaluated in muscle tissue samples of eleven fish species at

four locations in the Colombian Amazon, reporting values

that ranged between 0.0116 and 2.0123, Me = 0.3549

mg kg-1 Hg. Additionally, Mosquera-Guerra et al. (2015a)

reported that 54% (n = 103) of the total tissue samples, of

the catfish species Calophysus macropterus (omnivore) from

the Amazon, presented ranges between: 0.11 and

1.66 mg kg-1, coinciding with that in Salinas et al. (2013)

for the same cat fish species. Data on Hg concentrations

from muscle tissue samples in other Amazon aquatic top

mammals predator include: the giant otter (Pteronura

brasilinsis), from Rio Negro in the Pantanal, Brazil, with a

mean mercury concentration 0.17 mg g-1 in muscle tissue

samples in the Amazon (Dias Fonseca et al. 2005).

In the southern Atlantic Ocean, Marcovecchio et al.

(1990) reported values of mercury concentration of

3.8 lg g-1 ww in liver tissues for the same region, in one

female of the Franciscan dolphin. Similar results are re-

ported in Asian coastal and riverine dolphins by Wei–Wei

et al. (2006) in some key tissues: liver 87.94 (1.4–181 lg g-

1 ww), kidney 21.8 (43 lg g-1 ww), small intestine 17.04

(2.4–66 lg g-1 ww) and stomach 2.65 (0.65–5.2 lg

g-1 ww) of five Yangtze finless porpoises (Neophocaena

phocoenoides asiaeorientalis) in Eastern Dongting Lake,

China; Zhou et al. (1993) document concentrations of total

Hg for N. p. sunameri in: liver 10.24 (0.31–34.7 lg g-1 ww)

and kidney 1.735(0.756–3.01 lg g-1 ww) for populations

distributed in the Yellow Sea (China); Zhang et al. (1996)

in the same species reported total Hg concentrations for:

liver 76.05 (0.23–34.93 lg g-1 ww), kidney 8.23 (0.06–

29.93 lg g-1 ww), small intestine 0.36 (0.06–1.46 lg

g-1 ww) and stomach 0.54 (0.00–1.96 lg g-1 ww) in the

Bohai Sea (China); Fujise et al. (1988) reported concen-

Figure 5. Current gold mining operations in the Amazon and Orinoco basins and the locations where river dolphins were sampled. Adapted

from WCS (2017).
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trations values in liver (3.38 lg g-1 ww) and kidney

(1.8 lg g-1 ww), in populations of Phocoenoides dalli for in

the Pacific Northwest, and Yang (2001) reported concen-

tration values of 7.8 (2.31–28.8 lg g-1 ww) in liver, for the

same species, obtained from populations of the Japan Sea.

Additionally, in North Eastern Europe, Siebert et al. (1999)

reported concentrations of total Hg in: liver 12.1 (0.2–

13.0 lg g-1 ww) and kidney 2.3 (0.1–33.5 lg g-1 ww) for

60 individuals of Phocoena phocoena, distributed in the

North and Baltic Seas.

The presence of mercury in aquatic environments af-

fects mammalian species at several levels (Scheuhammer

et al. 2007). Mercury is known to be at least partially

responsible for the decline of North American otters (Lutra

canadensis) and the European otter (Lutra lutra) (Evans

et al. 1998; Gutleb et al. 1998; Wren 1985). Although

incidents of Hg poisoning in wild mammals are rare, this is

perhaps a result of the practitioner’s inability to observe

and demonstrate the impacts, rather than an absence of the

disease (Wren 1986).

Effects of the mercury on dolphins are documented by

Krishna et al. (2003), with Atlantic bottlenose dolphins

(Tursiops truncatus) having liver abnormalities associated

with chronic accumulation of Hg. Cardellicchio et al.

(2002) reported that a synergy between Hg with other

pollutants could result in the death of striped dolphins

(Stenella coeruleoalba) found in the Mediterranean coasts;

primary damage was caused to the central nervous system,

including a motor and sensory deficit and behavioural

deficiency, anorexia, lethargy, reproductive disorders and

death of foetuses as well as deficiencies of the immune

system, facilitating the appearance of infectious diseases

and pneumonia. High concentrations of mercury also

generated serious disorders in liver, kidney and brain tis-

Figure 6. Projected gold mining operations in the Amazon and Orinoco basins and the locations where river dolphins were sampled. Adapted

from WCS (2017).
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sues of striped dolphins (Augier et al. 1993). Although ef-

fects caused by high concentrations of Hg have not been

studied yet, mercury is present in river dolphins since very

early stages of development. Mosquera-Guerra et al.

(2015b) reported the presence of Hg in a river dolphin

foetus (0.16 mg kg-1 wet weight) collected in the Amazon.

Freshwater dolphins are sensitive to environmental

perturbation, evidencing specific responses to changes in

their habitats and rendering them useful bioindicators for

monitoring the health of riverine ecosystems (Ichihashi and

Tatsukawa 1993; Aguilar et al. 1999; O’Shea 1999; Gomez-

Salazar et al. 2012). It is urgent to generate information on

the effects of mercury bioaccumulation on populations of

river dolphins. To date, no studies have been conducted on

the effects of this pollutant on Inia and Sotalia, raising the

concern for the persistence of species in these two genera.

This is particularly true, if we take into consideration the

increment in intensity and frequency of other types of

threats affecting these cetaceans, a situation that elevated

Inia’s conservation status from Data Deficient up to

Endangered (Da Silva et al. 2018).

CONCLUSIONS

Our data support the presence of total Hg in river dolphin

tissues in the Amazon, Itenez and Orinoco basins, evi-

dencing the role of these cetaceans as bioindicators of the

presence of this heavy metal in natural aquatic environ-

ments.

These results indirectly point towards the complexity

of the Hg biogeochemical cycle in the analysed environ-

ments and call our attention on the need to incorporate

other factors, such as mercury measurements at different

levels of the trophic web, as well as elements of movement

ecology of these cetaceans in future analyses. River dolphins

are keystone species in the South American largest river

basins, making it critical to address this growing threat

through transboundary cooperation among countries to-

wards reducing the use of mercury, as stated in the

Minamata Convention. Mercury contamination further

exacerbates the conservation status of these aquatic mam-

mals, populations of which are currently experiencing the

negative effects of habitat degradation and fragmentation,

due to the construction of hydropower dams, conflicts with

fisheries and the effects of climate change.

Figure 7. Box plot of total Hg concentrations (lg g-1 ww) in muscle tissues of S. guianensis from the Brazilian Atlantic coast: Guanabara Bay

(Kehrig et al. 2004); Espirito Santo (Lopes et al. 2008); Northern Rio de Janeiro State (Carvalho et al. 2008); Rio de Janeiro (Moura et al. 2011);

Amazon coast (Moura et al. 2012); Inia and Sotalia from Amazon, Orinoco and Itenez Rivers in the present study.
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Additional studies to evaluate Inia and Sotalia con-

servation status under these emergent scenarios are urgent,

particularly for the middle and lower Amazon basin. In this

context, it is necessary to extend this type of analysis along

the main tributary rivers such as Caqueta/Japura, Putu-

mayo/Iça, Madeira, the lower Amazon basin and the Ara-

guaia–Tocantins complex.

The dolphins’ position as top predators makes these

organisms sentinel species of water resources. Therefore,

changes in their health should be interpreted as an early

warning on ecosystem degradation and even human health

and wellbeing. The two analysed basins are homeland to

some vulnerable sectors of the human population, which

constitute ancestral fish-eating societies that face an

imminent risk. This last statement should be interpreted

under the philosophy of the sustainable development goals

in which ‘‘no one is left behind’’.
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ñ
o
(C

o
lo
m
b
ia
)

O
ri
n
o
co

0.
00
3

M
T
/A

17
7

14
8

06
Ja
n
u
ar
y
20
16

I.
g.

h
u

m
bo

ld
ti

an
a

P
u
er
to

C
ar
re
ñ
o
(C

o
lo
m
b
ia
)

O
ri
n
o
co

0,
84

M
T
/A

18
8

16
0

06
Ja
n
u
ar
y
20
16

I.
g.

h
u

m
bo

ld
ti

an
a

P
u
er
to

C
ar
re
ñ
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ñ
o
(C

o
lo
m
b
ia
)

O
ri
n
o
co

0.
1

M
T
/A

18
9

17
4

28
Ja
n
u
ar
y
20
18

I.
g.

h
u

m
bo

ld
ti

an
a

P
u
er
to

C
ar
re
ñ
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ñ
o
(C

o
lo
m
b
ia
)

O
ri
n
o
co

0.
55

M
T
/A

20
7

16
8

28
Ja
n
u
ar
y
20
18

I.
g.

h
u

m
bo

ld
ti

an
a

P
u
er
to

C
ar
re
ñ
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Pollution: Integration and Synthesis, Watras CJ, Huckabee JW
(Editors.), Boca Raton, Lewis Publishers, pp. 21–40

Bahı́a-Oliveira M, Corvelo CC, Mergler D, Burbano RR, Lima
PDL, Cardoso PC, Lucotte M, Amorim IM (2004) Environ-
mental biomonitoring using cytogenetic endpoints in a popu-
lation exposed to mercury in Brazilian Amazon. Environmental
and Molecular Mutagenesis 44:346–349; https://doi.org/10.100
2/em.20054 [Online October 8, 2004]

Barbosa CA, Garcı́a AM, De Souza JR (1997) Mercury contami-
nation in hair of riverine populations of Apiacás Reserve in the
Brazilian Amazon. Water, Air, and Soil Pollution 97(1–2): 1–8;
https://doi.org/10.1023/a:1018336820227 [Online June 1, 1997]

Barbosa AC, Dorea JG. (1998) Indices of mercury contamination
during breast feeding in the Amazon Basin. Environmental
Toxicology and Pharmacology 6. 71–79; https://doi.org/10.101
6/s1382-6689(98)00031-3 [Online October 1, 1998]

Basu N, Scheuhammer A, Grochowina N, Klenavic K, Evans
O’Brien M, Chan HM (2005) Effects of mercury on neuro-
chemical receptors in wild river otters (Lontra canadensis).
Environmental Science and Technology 39: 3585–3591; http
s://doi.org/10.1021/es0483746 [Online March 22, 2005]

Best RC and da Silva VMF (1989) Amazon River dolphin, boto
Inia geoffrensis (de Blainville, 1817). In: Handbook of marine
mammals, Vol. 4: River dolphins and the larger toothed whales,
Ridgway SH and Harrison R (editors), London: Academic Press,
pp 1–24

Boas-Villas RC (1997) The mercury problem in the Amazon due
to gold extraction. Journal of Geochemical Exploration 58: 217–
222; https://doi.org/10.1016/s0375-6742(96)00075-1 [Online
April 1997]

Bossart GD (2011) Marine Mammals as Sentinel Species for
Oceans and Human Health. Veterinary Pathology 48(3) 676–

690; https://doi.org/10.1177/0300985810388525 [Online
December 15, 2010]

Caballero S, Trujillo F, Vianna JA, Barrios-Garrido H, Montiel
MG, Beltran-Pedreros S, Marmontel M, Santos MCO, Rossi-
Santos MR, Santos FR, Baker CS (2007) Taxonomic status of
the genus Sotalia: species level ranking for ‘tucuxi’ (Sotalia
fluviatilis) and ‘costero’ (Sotalia guianensis) dolphins. Marine
Mammal Science 23(2): 358–386. https://doi.org/10.1111/j.174
8-7692.2007.00110.x [Online June 15, 2007]

Cardellicchio N, Decataldo A, Di Leo A, Giandomenico S (2002)
Trace elements in organs and tissues of striped dolphins (Ste-
nella coeruleoalba) from the Mediterranean Sea (Southern Italy).
Chemosphere 49:85–90; https://doi.org/10.1016/s0045-6535(02
)00170-4 [Online October 01, 2002]

Carvalho CEV, Di Beneditto APM, Souza CMG, Ramos RMA,
Resende CE (2008) Heavy metal distribution in two cetacean
species from Rio de Janeiro State, south-eastern Brazil. J Mar
Biol Assoc UK 88:1117; https://doi.org/10.1017/s002531540800
0325 [Online August 01, 2008]

Cid de Souza TM, Bidone ED (1994) Estimativa do consume
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geográficos de la tonina o delfı́n de rı́o, Inia geoffrensis hum-
boldtiana Pilleri & Gihr, 1978 (Cetartiodactyla, Iniidae) en los
rı́os Guayabero y Losada, sierra de La Macarena, Meta,
Colombia. Pp. 289–305. In: Lasso, CA, Morales- Betancourt MA
and Escobar-Martı́nez, ID (Eds.). V. Biodiversidad de la sierra
de La Macarena, Meta, Colombia. Parte I. Rı́os Guayabero
medio, bajo Losada y bajo Duda. Serie Editorial Fauna Silvestre
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